
Computational Approaches 
to Biological Challenges 

(algorithmic primer)

Shortest Common Superstring & Lander-
Waterman Statistics



What is Computer Science?

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG


What is Computer Science?
Not actually simple to define constructively 

Still debate whether certain areas constitute CS

Computer science is the scientific and practical approach to computation 
and its applications. It is the systematic study of the feasibility, structure, 
expression, and mechanization of the methodical procedures (or 
algorithms) that underlie the acquisition, representation, processing, 
storage, communication of, and access to information* …

*http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf


What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

It turns out that a major challenge in 
bioinformatics will simply be determining how to 
frame the computational problem corresponding to 
a biological question in a well-posed and 
meaningful way!



https://en.wikipedia.org/wiki/Shotgun_sequencing

What is genome assembly: intuitively?

Why start with  
many cloned genomes  

and not just one?



Input DNA

Reads Reference genome

+

Assembly

X
How to assemble 
puzzle without the 
bene!t of knowing 
what the !nished 
product looks like?

Next 5 slides courtesy of Ben Langmead



Assembly

Whole-genome “shotgun” sequencing starts by copying and 
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA%%TATCTCGG%%CTCTAGGCCCTC%%ATTTTTT
GGC%%GTCTATAT%%CTCGGCTCTAGGCCCTCA%%TTTTTT
GGCGTC%%TATATCT%%CGGCTCTAGGCCCT%%CATTTTTT
GGCGTCTAT%%ATCTCGGCTCTAG%%GCCCTCA%%TTTTTT

(“Shotgun” refers to the random fragmentation of the whole 
genome; like it was !red from a shotgun)



Assembly

Assume sequencing produces such a large # fragments that almost 
all genome positions are covered by many fragments...

Reconstruct 
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT



Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct 
this



Assembly

Reconstruct this
From 
these

???????????????????????????????????

CTAGGCCCTCAATTTTT 
GGCGTCTATATCT 
CTCTAGGCCCTCAATTTTT 
TCTATATCTCGGCTCTAGG 
GGCTCTAGGCCCTCATTTTTT 
CTCGGCTCTAGCCCCTCATTTT 
TATCTCGACTCTAGGCCCTCA 
GGCGTCGATATCT 
TATCTCGACTCTAGGCC 
GGCGTCTATATCTCG 

In general: we don’t even know exactly how long the original string was!



Aside: How Much Coverage is Enough? 
Lander-Waterman Statistics

How many reads to we need to be sure we cover the whole genome?

g

L
N

genome θ
= fraction of L 
required to detect 
an overlap

An island is a contiguous group of reads that are 
connected by overlaps of length ≥ θL.  
(Various colors above)

Want: Expression for expected # of islands given N, g, L, θ.

* Slide from Carl Kingsford

 Lander ES, Waterman MS (1988). "Genomic mapping by fingerprinting random clones: a mathematical 
analysis". Genomics 2 (3): 231–239



Expected # of Islands
λ := N/g = probability a read starts at a given position  
(assuming random sampling)

Pr(k reads start in an interval of length x)  
x trials, want k “successes”, small probability λ of success 
Expected # of successes = λx 
Poisson approximation to binomial distribution:

Pr(k reads in length x) = e��x (�x)
k

k!

Expected # of islands = N ⨉ Pr(read is at rightmost end of island)

(1-θ)L θL = N ⨉ Pr(0 reads start in (1-θ)L)

(from above)

← LN/g is called the coverage c.

= Ne��(1�✓)L�0

0!

= Ne��(1�✓)L

= Ne�(1�✓)LN/g

* Slide from Carl Kingsford



Expected # of Islands, 2 

Expected # of islands

We can rewrite this expression to depend more directly on the things we 
can control: c and θ 

= Ne�(1�✓)LN/g

= Ne�(1�✓)c

=
L/g

L/g
Ne�(1�✓)c

=
g

L
ce�(1�✓)c
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What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them



What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

Not well-specified.  
What makes one genome more likely than another?  
What constraints do we place on the space of solutions?



What is Computer Science?

Concerned with the development of provably correct 
and efficient computational procedures (algorithms & 
data structures) to answer well-specified problems.

To answer a computational question, we first need 
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains 
all of them

✔



Shortest Common Superstring

Given: a collection,

Find*: The shortest possible genome (string), G, such

 , of sequencing S = {s1, s2, . . . , sk}
reads (strings)

that s1, s2, . . . , sk are all substrings of G

*for  reasons we’ll explore later, this isn’t actually a great formulation for 
genome assembly.

How, might we go about solving this problem?



Shortest common superstring

Given a collection of strings S, !nd SCS(S): the shortest string that 
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA%AAB%BBA%ABA%ABB%BBB%AAA%BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBA
%%%%%BAB
%%%%%%ABA
%%%%%%%BAA

24

10

Slide courtesy of Ben Langmead



Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAAB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABA

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

superstring 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modi!ed overlap 
graph where each edge has 
cost = - (length of overlap)

SCS corresponds to a path that 
visits every node once, minimizing 
total cost along path

That’s the Traveling Salesman 
Problem (TSP), which is NP-hard!

S: AAA%AAB%ABB%BBB%BBA

-2

-1

Slide courtesy of Ben Langmead



Shortest common superstring

Say we disregard edge weights and 
just look for a path that visits all the 
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem: 
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS 
is NP-hard

Slide courtesy of Ben Langmead

Shortest common superstring

Say we disregard edge weights and 
just look for a path that visits all the 
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem: 
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS 
is NP-hard

Shortest common superstring

Say we disregard edge weights and 
just look for a path that visits all the 
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem: 
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBA

Indeed, it’s well established that SCS 
is NP-hard

So, it’s not even the weights that  
make visiting all nodes once hard



Shortest common superstring & friends

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness 
and NP-completeness, see Chapters 34 and 35 of “Introduction to 
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9 
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online: 
http://www.cs.berkeley.edu/~vazirani/algorithms)

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring 
are all NP-hard

Slide courtesy of Ben Langmead

Who remembers reductions from 351?



Important note: The fact that we modeled SCS as NP-
hard problems (TSP and HP) does not prove that (the 
decision version of) SCS is NP-complete. To do that, we 
must reduce a known NP-complete problem to SCS.

Given an instance I of a known hard problem, generate an 
instance I’ of SCS such that if we can solve I’ in polynomial 
time, then we can solve I in polynomial time. This implies that 
SCS is at least as hard as the hard problem.

This can be done e.g. with HAMILTONIAN PATH

Arbitrary 
instance of 

HP
Constructed 

instance of SCS

transformation 
(computable in poly time)

reverse transformation 
(computable in poly time)

solve SCS 
instance 

HP 
known to 
be NP-complete



Shortest Common Superstring

The fact that (the decision version of) SCS is NP-complete means that it 
is unlikely that there exists any algorithm that can solve a general 
instance of this problem in time polynomial in n — the number of input 
strings (i.e. reads in the case of genome assembly).

If we give up on finding a shortest possible superstring G, and instead 
look for one that’s “near-shortest”, how does the situation change?



Shortest Common Superstring
There’s a “greedy” heuristic that turns out to be an approximation 
algorithm (provides a solution within a constant factor of the the 
optimum)

ratio authors year

approximating SCS

3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

2 8
9 Teng, Yao [23] 1993

2 5
6 Czumaj, Gasieniec, Piotrow, Rytter [8] 1994

2 50
63 Kosaraju, Park, Stein [15] 1994

2 3
4 Armen, Stein [1] 1994

2 50
69 Armen, Stein [2] 1995

2 2
3 Armen, Stein [3] 1996

2 25
42 Breslauer, Jiang, Jiang [5] 1997

2 1
2 Sweedyk [21] 1999

2 1
2 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005

2 1
2 Paluch, Elbassioni, van Zuylen [18] 2012

2 11
23 Mucha [16] 2013

approximating compression

1
2 Tarhio, Ukkonen [22] 1988
1
2 Turner [24] 1989
2
3 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
2
3 Paluch, Elbassioni, van Zuylen [18] 2012

inapproximability for SCS

1 1
17245 Ott [17] 1999

1 1
1216 Vassilevska [25] 2005

1 1
332 Karpinski, Schmied [14] 2012

inapproximability for compression

1 1
11216 Ott [17] 1999

1 1
1071 Vassilevska [25] 2005

1 1
203 Karpinski, Schmied [14] 2012

Table 1: Known approximation ratios and inapproximability results for length
and compression of superstrings

Golovnev, Kulikov, & Mihajlin. "Approximating Shortest Superstring Problem Using de Bruijn Graphs." Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2013.

At each step, chose the pair of 
strings with the maximum overlap, 
merge them, and return the 
merged string to the collection.

Greedy conjecture factor of 2-
OPT is the worst case

Different approx. (not all greedy)

Open conjecture! We can prove 3.5, but many 
believe the factor is actually 2.



Shortest common superstring: greedy
Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Algorithm in action (l = 1):

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy
Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

  AAA AAB ABB BBB BBA 
Input strings

Algorithm in action (l = 1):

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy
Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

  AAA AAB ABB BBB BBA 
Input strings

Algorithm in action (l = 1):
AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB

11

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB

11

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

BBBA

AAABB

2

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB 
  AAABB BBBA

1

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB 
  AAABB BBBA 
  AAABBBA AAABBBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

  AAA AAB ABB BBB BBA 
  AAA AAB ABB BBB BBA 
  AAAB ABB BBB BBA 
  AAAB BBBA ABB 
  AAABB BBBA 
  AAABBBA

That’s the SCS

AAABBBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.  
Stop when no more overlaps exist. Concatenate resulting strings.  l = 
minimum overlap. 

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Greedy shortest common superstring (when is it not optimal?)

AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB 

AAABBA BBB

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB 

AAABBA BBB 

AAABBABBB superstring, length=9

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



AAA AAB ABB BBA BBB 

AAAB ABB BBA BBB 

AAAB ABBA BBB 

AAABBA BBB 

AAABBABBB superstring, length=9

AAABBBA superstring, length=7

Greedy answer isn't necessarily optimal

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

  ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

  ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
  ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

  ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
  ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
  ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

  ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
  ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
  ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
  ng_time long_ti g_long_ ng_lon a_long long_l ong_lo

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

  ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
  ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
  ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
  ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
  ng_time ong_lon long_ti g_long_ a_long long_l

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

  ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
  ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
  ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
  ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
  ng_time ong_lon long_ti g_long_ a_long long_l
  ong_lon long_time g_long_ a_long long_l

Why else might it not be a good model for assembly?
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Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from: 
a_long_long_long_time.  l = 3.

  ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
  ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
  ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
  ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
  ng_time ong_lon long_ti g_long_ a_long long_l
  ong_lon long_time g_long_ a_long long_l
  long_lon long_time g_long_ a_long
  long_lon g_long_time a_long
  long_long_time a_long
  a_long_long_time

Foiled by repeat!

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

  long_lon ng_long_ _long_lo g_long_t ong_long g_long_l ong_time a_long_l _long_ti long_tim 
  long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l _long_ti 
  _long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l 
  _long_time a_long_lo long_lon ng_long_ g_long_t ong_long g_long_l 
  _long_time ong_long_ a_long_lo long_lon g_long_t g_long_l 
  g_long_time ong_long_ a_long_lo long_lon g_long_l 
  g_long_time ong_long_ a_long_lon g_long_l 
  g_long_time ong_long_l a_long_lon 
  g_long_time a_long_long_l 
  a_long_long_long_time 
  a_long_long_long_time 

Got the whole thing: a_long_long_long_time

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out 
there are 3 copies of long?

a_long_long_long_time

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out 
there are 3 copies of long?

a_long_long_long_time

g_long_l

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out 
there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Third law of assembly

Repeats make assembly difficult; whether we can assemble 
without mistakes depends on length of reads and 
repetitive patterns in genome

a_long_long_long_time

a_long_long_time

Collapsing a tandem repeat:

Spurious rearrangement:

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf



Repeats foil assembly

Portion of overlap graph involving repeat family A

As are longer than 
read length
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read length
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Repeats foil assembly

Portion of overlap graph involving repeat family A

As are longer than 
read length

A

Lots of overlaps 
among A reads

Even if we avoid collapsing copies of A, we can’t know which paths in 
correspond to which paths out
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Take-home message:

We are interested in correct and efficient algorithms 
for solving well-specified problems.

We must be careful about how we pose the 
problems.

Actually, shortest common superstring is a rather 
poor model for sequence assembly, due to repeats 
and errors.


