Computational Approaches
to Biological Challenges
(algorithmic primer)

Shortest Common Superstring & Lanaer-
Waterman Statistics

A& UNIVERSITY OF

MARYLAND

What is Computer Science”

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE ™M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ep. THE RUNNING TIME 1S O(P¥n)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ...

WTF, MAN., I JUST
WANTED TO LEARN
HOW TO PROGRAM
VIDEO GAMES,

http://people.cs.pitt.edu/~kirk/cs2110/computer_science major.PNG

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

What is Computer Science”

Not actually simple to define constructively

Still debate whether certain areas constitute CS

Computer science is the scientific and practical approach to computation
and its applications. It is the systematic study of the feasibility, structure,
expression, and mechanization of the methodical procedures (or
algorithms) that underlie the acquisition, representation, processing,
storage, communication of, and access to information™ ...

*http://www.cs.bu.edu/AboutCS/WhatlsCS. pdf

http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

What is Computer Science”

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

't turns out that a major challenge In
bioinformatics will simply be determining how to
frame the computational problem corresponding to
a biological question in a well-posed anad
meaningful way!

What is genome assembly: intuitively?

Why start with
many cloned genomes —» Cloned genomes
and not just one?
Multiple genomes are sheared
into variable sized segments
Unordered sequenced
segments

Computational automated
assembly

Resulting overlapping sequence
segments. (The higher the
coverage the better the quality
of the sequencing.

ence ments
ATGTTCCGATTAGGAAA AACTGTTTCATTICAGTAAAAGGAGGAAATATAA l S IR SR

genome consensus,

https://en.wikipedia.org/wiki/Shotgun_sequencing

Assembly

Reads

e B e "E

" ‘ “ * YL !
- 1, %’ “ao

Input DNA

Next 5 slides courtesy of Ben Langmead

Referapga.genoms

How to assemble
puzzle without the
benefit of knowing
what the finished
product looks like?

Assembly

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

(“Shotgun”refers to the random fragmentation of the whole
genome; like it was fired from a shotgun)

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTI
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTI

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Assembly

Assume sequencing produces such a large # fragments that almost
all genome positions are covered by many fragments...

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
Reconstruct CTCGGCTCTAGCCCCTCATTTT
this TATCTCGACTCTAGGCCCTCA
TATCTCGACTCTAGGCC From these
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

> GGCGTCTATATCTCGGCTCTAGGCCCTCATTITTT

Assembly

..but we don't know what came from where

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
Reconstruct TCTATATCTCGGCTCTAGG
this GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGCCCCTCATTTT From these

TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

> GGCGTCTATATCTCGGCTCTAGGCCCTCATTITTT

Assembly

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT From
CTCGGCTCTAGCCCCTCATTTT these
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC

GGCGTCTATATCTCG |
P ipipinip i i e e ir il InEn i in En i b Bn B o Bb B Jin b B8

Reconstruct this

In general: we don’t even know exactly how long the original string was!

Aside: How Much Coverage is Enough?
Lander-Waterman Statistics

Lander ES, Waterman MS (1988). "Genomic mapping by fingerprinting random clones: a mathematical
analysis'. Genomics 2 (3): 231-239

How many reads to we need to be sure we cover the whole genome?

- Q

- R

£ €11 0] € = O

I e

—— = fraction of L
L required to detect
an overlap

An 1sland is a contiguous group of reads that are
connected by overlaps of length > 6L.
(Various colors above)

Want: Expression for expected # of islands given N, g, L, 0.

* Slide from Carl Kingsford

Expected # of Islands

A := N/g = probability a read starts at a given position
(assuming random sampling)

Pr(k reads start in an interval of length x)

x trials, want k “successes”, small probability A of success
Expected # of successes = Ax

Poisson approximation to binomial distribution:

—\T (Ax)k

Pr(k reads in length x) = e I

Expected # of islands = N X Pr(read is at rightmost end of island)

(1-6)L - 0L = N X Pr(o reads start in (1-6)L)

_ N€_>\(1_8)L >\O

—— (from above)

_ N€_>\(1_8)L

_ Ne—(l—@)LN/g < LN/g is called the coverage c.

* Slide from Carl Kingsford

Expected # of Islands, 2

We can rewrite this expression to depend more directly on the things we
can control: c and 0

Expected # of islands — Ne_(l_Q)LN/g

—(1-6
— Ne (170)c

700 — L/g Ne_(l_e)c

60p = 10005 g = 1000000 L/g
p) -
@) BN
§ 500 \\‘\\ — 266_(1_9)C
:c_"e 406 ///_ N \ L
H- /// \\ \t} =0 :)::
'-d 300 /7 \\\\ \\,
I~ AN
O / AN .
O 20 | N AN
Q AN \\\
é 104 / EL%G) . 1 r; \\\ < > ~

| e T
C

* Slide from Carl Kingsford

What is Computer Science”

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

- a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

What is Computer Science”

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

- a colletmer, R, of sequenciae@sreads (strings)

Find: [ha.#®Ome (string), G, that gerrematged them

Not well-specitfied.
What makes one genome more likely than another?
What constraints do we place on the space of solutions”

What is Computer Science”

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational guestion, we first need
a well-formulated problem.

- a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains
all of them

Shortest Common Superstring

~a collection, S = {s1,52,...,5k} , of sequencing
reads (strings)

Find*: The shortest possible genome (string), G, such
that s1,s9,...,8, are all substrings of G

How, might we go about solving this problem?

*for reasons we'll explore later, this isn't actually a great formulation for
genome assembly.

Shortest common superstring

Given a collection of strings S, find SCS(S): the shortest string that
contains all strings in S as substrings

Without requirement of “shortest,” it's easy: just concatenate them

Example: S: BAA AAB BBA ABA ABB BBB AAA BAB

Concatenation: BAAAABBBAABAABBBBBAAABAB
| 24 |

SCS5(S): AAABBBABAA
: 10 :

AAA
AAB
ABB
BBB
BBA
BAB
ABA
BAA

Slide courtesy of Ben Langmead

Idea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB

—

AAA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Idea: pick order for strings in S and construct superstring

order 1. AAA AAB ABA ABB BAA BAB BBA BBB

—

AAAB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Idea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB

—

AAABA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Idea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB

—

AAABABB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Idea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB «— superstring 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Idea: pick order for strings in S and construct superstring

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB «— superstring 1

order2: AAA AAB ABA BAB ABB BBB BAA BBA
AAABABBBAABBA <«— superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

order 1: AAA AAB ABA ABB BAA BAB BBA BBB
AAABABBAABABBABBB «— superstring 1

order2: AAA AAB ABA BAB ABB BBB BAA BBA
AAABABBBAABBA <«— superstring 2

If S contains n strings, n! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring

Can we solve it?

Imagine a modified overlap
graph where each edge has
cost = - (length of overlap)

SCS corresponds to a path that
visits every node once, minimizing
total cost along path

That's the Traveling Salesman
Problem (TSP), which is NP-hard!

Slide courtesy of Ben Langmead

5: AAA AAB ABB BBB BBA

AAA

SC5(S5): AAABBBA

AAA
AAB
ABB
BBB
BBA

BBB

Shortest common superstring

Say we disregard edge weights and

just look for a path that visits all the

nodes exactly once

That's the Hamiltonian Path problem:

NP-complete

SO, it’'s no
make VISt

- even the welg

LS

ng all nodes or

ce

ﬁ

Indeed, it's well established that SCS

is NP-hard

Slide courtesy of Ben Langmead

S: AAA AAB ABB BBB BBA
SCS(S): AAABBBA
AAA
AAB
ABB
AAB S
that
ard
AAA > ABB
‘Bﬁﬁl »BhAr

Shortest common superstring & friends

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring
are all NP-hard

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness
and NP-completeness, see Chapters 34 and 35 of “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online:
http://www.cs.berkeley.edu/~vazirani/algorithms)

Who remembers reductions from 3517

Slide courtesy of Ben Langmead

Important note: The fact that we modeled SCS as NP-
hard problems (TSP and HP) does not prove that (the
decision version of) SCS is NP-complete. To do that, we
must reduce a known NP-complete problem to SCS.

an instance | of a known hard problem, generate an

instance |’ of SCS such that if we can solve |' in polynomial
time, then we can solve | in polynomial time. This implies that

SCS is at least as hard as the hard problem.
This can be done e.g. with HAMILTONIAN PATH

transformation

/ (computable in poly time) \

solve SCS
Instance

Arbitrary
instance of
HP

Constructed
instance of SCS

™~ reverse transformation _~"

(computable in poly time)

<KNOwnN {0
be NP-complete

Shortest Common Superstring

The fact that (the decision version of) SCS is NP-complete means that it
s unlikely that there exists any algorithm that can solve a general
instance of this problem in time polynomial in n — the number of input
strings (i.e. reads in the case of genome assembly).

If we give up on finding a shortest possible superstring G, and instead

look for one that's “near-shortest”, how does the situation change”

Shortest Common Superstring

There's a "greedy” heuristic that turns out to be an approximation
algorithm (provides a solution within a constant tactor of the the

optimum) |
Different approx. (not all greedy)
ratio authors year
At each step, chose the pair of approximating SCS
strings with the maximum overlap, 3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

merge them, and return the 25 Teng, Yao [23] 1993

merged Strlng to the CO”eC'tlon 2% Czumaj, Gasieniec, Piotrow, Rytter [§] 1994

222 Kosaraju, Park, Stein [15] 1994

22 Armen, Stein [1] 1994

. 229 Armen, Stein [2] 1995

Greedy conjecture factor of 2- 2 Atmen, Stein [3 1006

O 2T IS the WOrsSt case 22> Breslauer, Jiang, Jiang [5] 1997

22 Sweedyk [21] 1999

: 21 Kaplan, Lewenstein, Shafrir, Sviridenko [12]| 2005

O conjeciure! W can prove 35, but many 2 ki s s 2
believe the factor is actually 2. 21 Mucha [16] Y01

Golovneyv, Kulikov, & Mihajlin. "Approximating Shortest Superstring Problem Using de Bruijn Graphs." Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2013.

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —
AAA AAB ABB BBB BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. [=

minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —
AAA AAB ABB BBB BBA

AAA

AAB
) 2
1/ TN
| 1 -|ABB
2

1 p, 1

BBB 2 3BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. [=

minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA

AAA

AAB
) 2
1/ TN
' 1 -|ABB
2

1 p, 1

BBB 2 3BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

AAAB -/ABB

BBB 2 3BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA

AAAB -/ABB

BBB 2 BBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAAB 2 BB

gl A\
: 2
1 1

BBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAAB 2 BB

> A
: 2
1 1

BBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA

AAABB

1 2

BBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA
AAABBBA AAABBBA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS: in each round, merge pair of strings with maximal overlap.

Stop when no more overlaps exist. Concatenate resulting strings. [=
minimum overlap.

Algorithm in action (/= 1):

F——-Input strings —

AAA AAB ABB BBB BBA
AAA AAB ABB BBB BBA
AAAB ABB BBB BBA
AAAB BBBA ABB

AAABB BBBA
AAABBBA AAABBBA

That's the SCS

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring (when is it not optimal?)

AAA éAB ABB BBA BBB
\
AAAB ABB BBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring (when is it not optimal?)

AAA AAB ABB BBA BBB

v /
AAAB ABB BBA BBB

v V
AAAB ABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring (when is it not optimal?)

AAA AAB ABB BBA BBB

v /
AAAB ABB BBA BBB

v
AAAB ABBA BBB

v
AAABBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring (when is it not optimal?)

AAA AAB ABB BBA BBB

v /
AAAB ABB BBA BBB

v
AAAB ABBA BBB

v
AAABBA BBB

\ "4
AAABBABBB «— superstring, length=9

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring (when is it not optimal?)

AAA AAB ABB BBA BBB

v /
AAAB ABB BBA BBB

v V
AAAB ABBA BBB

v
AAABBA BBB

\/ "4
AAABBABBB «— superstring, length=9

AAABBBA <«— superstring, length=7

Greedy answer isn't necessarily optimal

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long
ng time g long ng lon a long long 1 ong ti ong lo long t

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

long lon g long time a_long

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

long lon g long time a_long

long long time a_long

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

long lon g long time a_long

long long time a_long

a_long long time

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why else might it not be a good model for assembly?

Greedy-SCS assembling all substrings of length 6 from:
a long long long time. [=3.

ng lon long a long long 1 ong ti ong lo long t g long g time ng tim
ng time ng lon long a long long 1 ong ti ong lo long t g long

ng time g long ng lon a long long 1 ong ti ong lo long t

ng time long ti g long ng lon a long long 1 ong lo

ng time ong lon long ti g long a long long 1

ong lon long time g long a long long 1

long lon long time g long a long

long lon g long time a_long

long long time a_long

a_long long time

1

Foiled by repeat!

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

long lon ng long long lo g long t ong long g long 1 ong time a_long 1 long ti long tim
long time long lon ng long long lo g long t ong long g long 1 a long 1 long ti
_long time long lon ng long long lo g long t ong long g long 1 a long 1

_long time a _long lo long lon ng long g long t ong long g long 1

_long time ong long a long lo long lon g long t g long 1

g long time ong long a long lo long lon g long 1

g long time ong long a_long lon g long 1

g long time ong long 1 a long lon

g long time a _long long 1

a_long long long time

a_long long long time

Got the whole thing: a_long long long time

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out
there are 3 copies of long?

a long long long time

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out
there are 3 copies of long?

a long long long time

g long 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out
there are 3 copies of long?

a long long long time

g long 1

One length-8 substring spans all three 1ongs

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Third law of assembly

Repeats make assembly difficult; whether we can assemble
without mistakes depends on length of reads and
repetitive patterns in genome

Collapsing a tandem repeat: a_long long long time

!

a long long time

Spurious rearrangement:

—

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Repeats foil assembly

Portion of overlap graph involving repeat family A

——- A —

Il:z Unique gz As are longer than
3 3

read length

Stretches of
genome

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Repeats foil assembly

Portion of overlap graph involving repeat family A

— A ——
kS L1
)
0 £
% S ::2 Unique gz As are longer than
9 3 > read length
= L4 R4
Lots of overlaps
among A reads
L1
% Lo
\
o L3
oc
L4

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Repeats foil assembly

Portion of overlap graph involving repeat family A

— A ——
S ., L
o E
% S ::2 Unique gz As are longer than
9 3 > read length
= L4 R4
Lots of overlaps
among A reads
L; [(TTTT1T1] (I 117 RN R
o L TTTTT ,/— R,
g L (TTIT] [T \TA— Rs
Ly [T TTTT] . "I R,

Even if we avoid collapsing copies of A, we can't know which paths in
correspond to which paths out

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Take-home message:

We are interested in correct and efficient algorithms
for solving well-specified problems.

We must be careful about how we pose the
problems.

Actually, shortest common superstring Is a rather
poor model for sequence assembly, due to repeats
and errors.

