
Computational Approaches
to Biological Challenges

(algorithmic primer)

Shortest Common Superstring & Lander-
Waterman Statistics

What is Computer Science?

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

What is Computer Science?
Not actually simple to define constructively

Still debate whether certain areas constitute CS

Computer science is the scientific and practical approach to computation
and its applications. It is the systematic study of the feasibility, structure,
expression, and mechanization of the methodical procedures (or
algorithms) that underlie the acquisition, representation, processing,
storage, communication of, and access to information* …

*http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

It turns out that a major challenge in
bioinformatics will simply be determining how to
frame the computational problem corresponding to
a biological question in a well-posed and
meaningful way!

https://en.wikipedia.org/wiki/Shotgun_sequencing

What is genome assembly: intuitively?

Why start with
many cloned genomes

and not just one?

Input DNA

Reads Reference genome

+

Assembly

X
How to assemble
puzzle without the
bene!t of knowing
what the !nished
product looks like?

Next 5 slides courtesy of Ben Langmead

Assembly

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA%%TATCTCGG%%CTCTAGGCCCTC%%ATTTTTT
GGC%%GTCTATAT%%CTCGGCTCTAGGCCCTCA%%TTTTTT
GGCGTC%%TATATCT%%CGGCTCTAGGCCCT%%CATTTTTT
GGCGTCTAT%%ATCTCGGCTCTAG%%GCCCTCA%%TTTTTT

(“Shotgun” refers to the random fragmentation of the whole
genome; like it was !red from a shotgun)

Assembly

Assume sequencing produces such a large # fragments that almost
all genome positions are covered by many fragments...

Reconstruct
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct
this

Assembly

Reconstruct this
From
these

???????????????????????????????????

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

In general: we don’t even know exactly how long the original string was!

Aside: How Much Coverage is Enough?
Lander-Waterman Statistics

How many reads to we need to be sure we cover the whole genome?

g

L
N

genome θ
= fraction of L
required to detect
an overlap

An island is a contiguous group of reads that are
connected by overlaps of length ≥ θL.
(Various colors above)

Want: Expression for expected # of islands given N, g, L, θ.

* Slide from Carl Kingsford

 Lander ES, Waterman MS (1988). "Genomic mapping by fingerprinting random clones: a mathematical
analysis". Genomics 2 (3): 231–239

Expected # of Islands
λ := N/g = probability a read starts at a given position
(assuming random sampling)

Pr(k reads start in an interval of length x)
x trials, want k “successes”, small probability λ of success
Expected # of successes = λx
Poisson approximation to binomial distribution:

Pr(k reads in length x) = e��x (�x)
k

k!

Expected # of islands = N ⨉ Pr(read is at rightmost end of island)

(1-θ)L θL = N ⨉ Pr(0 reads start in (1-θ)L)

(from above)

← LN/g is called the coverage c.

= Ne��(1�✓)L�0

0!

= Ne��(1�✓)L

= Ne�(1�✓)LN/g

* Slide from Carl Kingsford

Expected # of Islands, 2

Expected # of islands

We can rewrite this expression to depend more directly on the things we
can control: c and θ

= Ne�(1�✓)LN/g

= Ne�(1�✓)c

=
L/g

L/g
Ne�(1�✓)c

=
g

L
ce�(1�✓)c

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

100

200

300

400

500

600

700

L = 1000; g = 1000000

θ = 0.15

θ = 0.35

c

Ex
pe

ct
ed

 #
 is

la
nd

s

* Slide from Carl Kingsford

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

Not well-specified.
What makes one genome more likely than another?
What constraints do we place on the space of solutions?

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains
all of them

✔

Shortest Common Superstring

Given: a collection,

Find*: The shortest possible genome (string), G, such

 , of sequencing S = {s1, s2, . . . , sk}
reads (strings)

that s1, s2, . . . , sk are all substrings of G

*for reasons we’ll explore later, this isn’t actually a great formulation for
genome assembly.

How, might we go about solving this problem?

Shortest common superstring

Given a collection of strings S, !nd SCS(S): the shortest string that
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA%AAB%BBA%ABA%ABB%BBB%AAA%BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBA
%%%%%BAB
%%%%%%ABA
%%%%%%%BAA

24

10

Slide courtesy of Ben Langmead

Idea: pick order for strings in S and construct superstring

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAA

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAAB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABA

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABB

Idea: pick order for strings in S and construct superstring

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

superstring 1

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

Idea: pick order for strings in S and construct superstring

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

Try all possible orderings and pick shortest superstring

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABA ABB BAA BAB BBA BBBorder 1:

AAABABBAABABBABBB

AAA AAB ABA BAB ABB BBB BAA BBAorder 2:

AAABABBBAABBA

superstring 1

superstring 2

If S contains n strings, n ! (n factorial) orderings possible

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modi!ed overlap
graph where each edge has
cost = - (length of overlap)

SCS corresponds to a path that
visits every node once, minimizing
total cost along path

That’s the Traveling Salesman
Problem (TSP), which is NP-hard!

S: AAA%AAB%ABB%BBB%BBA

-2

-1

Slide courtesy of Ben Langmead

Shortest common superstring

Say we disregard edge weights and
just look for a path that visits all the
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem:
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS
is NP-hard

Slide courtesy of Ben Langmead

Shortest common superstring

Say we disregard edge weights and
just look for a path that visits all the
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem:
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS
is NP-hard

Shortest common superstring

Say we disregard edge weights and
just look for a path that visits all the
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem:
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBA

Indeed, it’s well established that SCS
is NP-hard

So, it’s not even the weights that
make visiting all nodes once hard

Shortest common superstring & friends

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness
and NP-completeness, see Chapters 34 and 35 of “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online:
http://www.cs.berkeley.edu/~vazirani/algorithms)

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring
are all NP-hard

Slide courtesy of Ben Langmead

Who remembers reductions from 351?

Important note: The fact that we modeled SCS as NP-
hard problems (TSP and HP) does not prove that (the
decision version of) SCS is NP-complete. To do that, we
must reduce a known NP-complete problem to SCS.

Given an instance I of a known hard problem, generate an
instance I’ of SCS such that if we can solve I’ in polynomial
time, then we can solve I in polynomial time. This implies that
SCS is at least as hard as the hard problem.

This can be done e.g. with HAMILTONIAN PATH

Arbitrary
instance of

HP
Constructed

instance of SCS

transformation
(computable in poly time)

reverse transformation
(computable in poly time)

solve SCS
instance

HP
known to
be NP-complete

Shortest Common Superstring

The fact that (the decision version of) SCS is NP-complete means that it
is unlikely that there exists any algorithm that can solve a general
instance of this problem in time polynomial in n — the number of input
strings (i.e. reads in the case of genome assembly).

If we give up on finding a shortest possible superstring G, and instead
look for one that’s “near-shortest”, how does the situation change?

Shortest Common Superstring
There’s a “greedy” heuristic that turns out to be an approximation
algorithm (provides a solution within a constant factor of the the
optimum)

ratio authors year

approximating SCS

3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

2 8
9 Teng, Yao [23] 1993

2 5
6 Czumaj, Gasieniec, Piotrow, Rytter [8] 1994

2 50
63 Kosaraju, Park, Stein [15] 1994

2 3
4 Armen, Stein [1] 1994

2 50
69 Armen, Stein [2] 1995

2 2
3 Armen, Stein [3] 1996

2 25
42 Breslauer, Jiang, Jiang [5] 1997

2 1
2 Sweedyk [21] 1999

2 1
2 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005

2 1
2 Paluch, Elbassioni, van Zuylen [18] 2012

2 11
23 Mucha [16] 2013

approximating compression

1
2 Tarhio, Ukkonen [22] 1988
1
2 Turner [24] 1989
2
3 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
2
3 Paluch, Elbassioni, van Zuylen [18] 2012

inapproximability for SCS

1 1
17245 Ott [17] 1999

1 1
1216 Vassilevska [25] 2005

1 1
332 Karpinski, Schmied [14] 2012

inapproximability for compression

1 1
11216 Ott [17] 1999

1 1
1071 Vassilevska [25] 2005

1 1
203 Karpinski, Schmied [14] 2012

Table 1: Known approximation ratios and inapproximability results for length
and compression of superstrings

Golovnev, Kulikov, & Mihajlin. "Approximating Shortest Superstring Problem Using de Bruijn Graphs." Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2013.

At each step, chose the pair of
strings with the maximum overlap,
merge them, and return the
merged string to the collection.

Greedy conjecture factor of 2-
OPT is the worst case

Different approx. (not all greedy)

Open conjecture! We can prove 3.5, but many
believe the factor is actually 2.

Shortest common superstring: greedy
Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Algorithm in action (l = 1):

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy
Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

 AAA AAB ABB BBB BBA
Input strings

Algorithm in action (l = 1):

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy
Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

 AAA AAB ABB BBB BBA
Input strings

Algorithm in action (l = 1):
AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

AAB

ABB

BBABBB

AAA

2

111
2

1

2

2 1

1
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBABBB

AAAB

11
1

2

2 1

2
2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

ABB

BBBA

AAAB

1

2

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB

11

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

BBBA

AAABB

2

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA

1

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA
 AAABBBA AAABBBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Input strings

Algorithm in action (l = 1):

 AAA AAB ABB BBB BBA
 AAA AAB ABB BBB BBA
 AAAB ABB BBB BBA
 AAAB BBBA ABB
 AAABB BBBA
 AAABBBA

That’s the SCS

AAABBBA

Greedy-SCS: in each round, merge pair of strings with maximal overlap.
Stop when no more overlaps exist. Concatenate resulting strings. l =
minimum overlap.

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Greedy shortest common superstring (when is it not optimal?)

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

AAA AAB ABB BBA BBB

AAAB ABB BBA BBB

AAAB ABBA BBB

AAABBA BBB

AAABBABBB superstring, length=9

AAABBBA superstring, length=7

Greedy answer isn't necessarily optimal

Greedy shortest common superstring (when is it not optimal?)

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long
 long_long_time a_long

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long
 long_long_time a_long
 a_long_long_time

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Greedy-SCS assembling all substrings of length 6 from:
a_long_long_long_time. l = 3.

 ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
 ng_time ong_lon long_ti g_long_ a_long long_l
 ong_lon long_time g_long_ a_long long_l
 long_lon long_time g_long_ a_long
 long_lon g_long_time a_long
 long_long_time a_long
 a_long_long_time

Foiled by repeat!

Why else might it not be a good model for assembly?

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

 long_lon ng_long_ _long_lo g_long_t ong_long g_long_l ong_time a_long_l _long_ti long_tim
 long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l _long_ti
 _long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l
 _long_time a_long_lo long_lon ng_long_ g_long_t ong_long g_long_l
 _long_time ong_long_ a_long_lo long_lon g_long_t g_long_l
 g_long_time ong_long_ a_long_lo long_lon g_long_l
 g_long_time ong_long_ a_long_lon g_long_l
 g_long_time ong_long_l a_long_lon
 g_long_time a_long_long_l
 a_long_long_long_time
 a_long_long_long_time

Got the whole thing: a_long_long_long_time

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out
there are 3 copies of long?

a_long_long_long_time

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out
there are 3 copies of long?

a_long_long_long_time

g_long_l

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out
there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Third law of assembly

Repeats make assembly difficult; whether we can assemble
without mistakes depends on length of reads and
repetitive patterns in genome

a_long_long_long_time

a_long_long_time

Collapsing a tandem repeat:

Spurious rearrangement:

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Repeats foil assembly

Portion of overlap graph involving repeat family A

As are longer than
read length

A
L1

L2

L3

L4

R1

R2

R3

R4St
re

tc
he

s
of

ge

no
m

e
RepetitiveUnique Unique

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Repeats foil assembly

Portion of overlap graph involving repeat family A

As are longer than
read length

A

Lots of overlaps
among A reads

L1

L2

L3

L4

R1

R2

R3

R4

L1

L2

L3

L4

R1

R2

R3

R4

St
re

tc
he

s
of

ge

no
m

e
Re

ad
s

RepetitiveUnique Unique

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Repeats foil assembly

Portion of overlap graph involving repeat family A

As are longer than
read length

A

Lots of overlaps
among A reads

Even if we avoid collapsing copies of A, we can’t know which paths in
correspond to which paths out

L1

L2

L3

L4

R1

R2

R3

R4

L1

L2

L3

L4

R1

R2

R3

R4

St
re

tc
he

s
of

ge

no
m

e
Re

ad
s

RepetitiveUnique Unique

Slide courtesy of Ben Langmead http://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Take-home message:

We are interested in correct and efficient algorithms
for solving well-specified problems.

We must be careful about how we pose the
problems.

Actually, shortest common superstring is a rather
poor model for sequence assembly, due to repeats
and errors.

